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Natural Language Understanding and Semantic Parsing

I Conventional pipeline model

input LF

List samples that contain
every major element

world

JLF K ={S10019,S10059,...}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Lunar QA system (Woods (1973))
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Natural Language Understanding and Semantic Parsing

I Semantic parsing: Learning representations from corpora and databases.

input LF

List samples that contain
every major element

world

JLF K ={S10019,S10059,...}

Data-Driven Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation

Paradigm and Supervision Dataset Learning Goal

Learning from LFs 1 {(inputi , LFi )}Ni input
Trans.−−−−→ LF

Learning from Denotation2 {(inputi , Jinputi K)}Ni input
LF+Trans.−−−−−−→ JinputK

1
Zettlemoyer and Collins (2012); Wong and Mooney (2007) 2 Clarke et al. (2010); Liang et al. (2013)
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Learning to Sportscast

I Learning from “grounded” and ambiguous supervision

I Objective: Generate correct representations for unseen commentary.

Supervision: Dataset D
input x Pink3 quickly passes over to pink7

LF z ∼ JzK {pass( pink3 , pink7 ),...}
Event Streams: D = {(xi , {z1, ...zk})}Ni=1
Task: learn (latent) y, translation

Sportscaster corpus (Chen and Mooney (2008))

world JzK
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Game Simulator
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Semantic Parsing and Entailment

I Entailment: One of the basic aims of semantics. (Montague (1970))

I Representations should be grounded in judgements about entailment.

input LF

All samples that contain
a major element

→
Some sample that contains
a major element

world

JLF K ={S10019,S10059,...} ⊇ {S10019}

Semantic Parsing

Reasoning

(FOR EVERY X /

MAJORELT : T;

(FOR EVERY Y /

SAMPLE : (CONTAINS Y X);

(PRINTOUT Y)))

Knowledge Representation
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Requirements for Semantic Representations

I Minimal requirement: Semantic parser should be able to recognize

certain types of entailments.

I RTE: Would a human reading t infer h? Dagan et al. (2005)

Text Input Hypotheses Entailments

input t: Pink3 quickly kicks to Pink7
?−→

h1: pink3 kicks the ball

h2: pink3 blocks ball

h3: pink3 passes near midfield

Entail

Contradict

Unknown

LF z: pass(pink3,pink7)

world JzK
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9
10 h1

¬h2

?h3
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Problem 1: Crude Representations

I Target representations are not expressive, underspecified

I Not based on background logical theory (no knowledge)

Entailment

Text t Hypothesis h
t→h
h→t Naive (do reps match?)

1.

Pink 3 quickly kicks

to pink 1
pass(pink3,pink1)

Pink 3 kicks over to

pink 1 near midfield
pass(pink3,pink1)

Unknown

Unknown
Entail

2.

Purple player 10

kicks the ball
kick(purple10)

Purple 10 again

shoots for the goal
kick(purple10)

Unknown

Entail
Entail

I Desiderata: explicit treatment of modifiers, sense distinctions
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Problem 2: Missing Knowledge

I Target representations are not expressive, underspecified

I Not based on background logical theory (no knowledge)

Entailment

Text t Hypothesis h
t→h
h→t Naive (do reps match?)

1.

Pink 3 quickly kicks

to pink 1
pass(pink3,pink1)

Pink 3 kicks over to

pink 1 near midfield
pass(pink3,pink1)

Unknown

Unknown
Entail

2.

Purple player 10

kicks the ball
kick(purple10)

Purple team scores

another goal
playmode(goal l)

Unknown

Unknown
Contradict

I Desiderata: explicit treatment of modifiers, sense distinctions abstract

relations between symbols
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How to improve this?

I General Problem: Semantic representations are underspecified, fail to

capture entailments, background knowledge missing.

I Goal: Capture the missing knowledge and inferential properties of text.

I Solution: Use entailment information (EI) as weak signal to train parser

and logical reasoning (an alternative to annotating representations).

Paradigm and Supervision Dataset Learning Goal

Learning from LFs {(inputi , LFi )}Ni input
Trans.−−−−→ LF

Learning from Denotation {(inputi , Jinputi K)}Ni input
LF+Trans.−−−−−−→ JinputK

Learning from Entailment {(inputt , input′h)i , EIi )}Ni (inputt , input′h)
Proof−−−→ EI
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Learning from Entailment: Illustration

I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 λ passes to pink1

a

h pink3 quickly kicks λ

y
pink3 ≡ pink3

I
pink3 ≡ pink3

λ wvc

I
λ w quickly

pass v kick, pink1 v λ
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

EI z Uncertain

world

pink3/pink3

λ/wc

pass/kick

pink1/λ

Data: D = {((t, h)i , zi )}Ni=1, Task: learn (latent) proof y
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Learning from Entailment: Proofs

pink3 ≡ pink3
I

pink3 ≡ pink3

λ wvc

I
λ w quickly

pass ≡ pass, pink1 v pink team

./
passes to pink1 v kicks to the pink team

./
passes to pink 1 # quickly kicks to the pink team

./
pink3 passes to pink1 # pink3 quickly kicks to the pink team

I Logic: Natural logic calculus (MacCartney and Manning (2009)).

I I : axioms, set-theoretic relations between symbols.

pass ≡ pass pink1 v pink team

∀x .pink1(x)→ pink-team(x) (FOL)

pass 1 pink1

pink

I ./: natural logic inference rule: ≡ ./v=v
I Latent variable: axioms or relations in proofs.
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Experiments with Sportscaster

I Step 1: Train a normal semantic parser, sentences → logical forms.

I Step 2: Jointly retrain on original data and inference pairs, sentences →
logical forms, pairs → proofs.

I Evaluation: generating logical representations (standard), recognizing

textual entailment (novel)
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Semantic Parsing: Sentences to Logical Form

I Use a semantic CFG, rules constructed from target representations using

small set of templates (Börschinger et al. (2011))

(x : purple 10 quickly kicks, z : {kick(purple10), block(purple7),...})

↓ (rule extraction)

Rep

in transitive

kickc

kickw

kicks

λc

quickly

arg1

purple10c

purple10w

purple 10

Rep

arg1×

purple10c

purple10w

kicks

λc

quickly

in transitive×

kickc

kickw

purple 10

Rep

in transitive

blockc

blockw

kicks

λc

quickly

arg1

purple7c

purple7w

purple 10

Rep

in transitive

blockc

blockw

kicks

blockw

quickly

arg1

purple7c

purple7w

purple 10
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Learning for Semantic Parsing

I Rules used to define a PCFG Gθ, learn correct derivations.

I Learning: EM bootstrapping approach (Angeli et al. (2012)), objective:

max
θ

N∑
i=1

log pθ(zi |xi )

input d

Purple 7 kicks to Purple 4

world

z = {pass(purple7,purple4)}

Beam Parser θt

Interpretation

d1

Semsv

play-transitive

playerarg2

purple4c

purple 4

passr

passc

passes to

playerarg1

purple7c

purple 7

d2

Semsv

play-transitive

playerarg2

purple4c

purple 4

turnoverr

turnoverc

passes to

playerarg1

purple7c

purple 7

d3

Semsv

play-transitive

playerarg2

purple8c

purple 8

kickr

passc

passes to

playerarg1

purple7c

purple 7

d4

Semsv

playerarg1

play-transitive

passr

passc

purple 4

playerarg2

purple4c

passes to

playerarg1

purple7c

purple 7

... ... dk ...

k-best list
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Semantic Parsing: Sentences to Logical Form

I Representations are a rough approximation, unknown items are ignored

(x : purple 10 quickly kicks, z : {kick(purple10), block(purple7),...})

↓ (parsing)

Rep

in transitive

kick

kickw

kicks

λc

quickly

arg1

purple10c

purple 10
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Entailment Modeling: Sentence Pairs to Proofs

I Alignment: heuristic alignment between target/hypothesis parse trees.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick
sub.−−→ score purple7

sub.−−→ purple team

relation.

score

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference

15
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Entailment Modeling: Sentence Pairs to Proofs

I Alignment: heuristic alignment between target/hypothesis parse trees.

((t: purple7 kicks the ball, h: purple team scores a goal), Uncertain)

transform. kick
sub.−−→ score purple7

sub.−−→ purple team
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score

kick
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pur7
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3
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Entailment Modeling: Sentence Pairs to Proofs

I Alignment: heuristic alignment between target/hypothesis parse trees.

((t: purple7 kicks the ball, h: purple team scores a goal again), Uncertain)

transform. kick
sub.−−→ score λ

ins.−−→vc purple7
sub.−−→ purple team

relation. w w v

score

kick

w./w=w

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (w ./v) = #(Uncertain)
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Entailment Modeling: Sentence Pairs to Proofs

I Alignment: heuristic alignment between target/hypothesis parse trees.

((t: purple7 kicks the ball, h: purple7 shoots for the goal), Uncertain)

transform. kick
sub.−−→ kick 1 purple7

sub.−−→ purple7

relation. w ≡

kick 1

kick

7 pur7

purple

4

7

3
1

5
62

8

9
10

inference (w ./≡) =w (Uncertain)
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Natural Logic Rules as a PCFG

I Rules of the logic are encoded as probabilistic rewrite rules.

I Proof example

pink3 ≡ pink3
I

pink3 ≡ pink3

λ wvc

I
λ w quickly

pass ≡ pass, pink1 v pink team

./
passes to pink1 v kicks to the pink team

./
passes to pink 1 # quickly kicks to the pink team

./
pink3 passes to pink1 # pink3 quickly kicks to the pink team

I PCFG rules

(X ./ Y ) −→./ X / Y
0.5 ≡arg1 −→I pink3 / pink3
0.5 ≡arg1 −→I pink1 / pink1
0.9 varg1 −→I pink1 / pink team
0.1 varg1 −→I pink team / pink1
1.0 w −→I λ / vc

1.0 v −→I vc / λ
0.8 vrel −→I pass / kick
0.2 vrel −→I kick / pass
0.7 wrel −→I kick / pass
0.3 wrel −→I pass / kick

16



Learning Entailment Rules

I Rules define an inference PCFG G′θ, learn correct proofs.

I Learning: Grammatical inference problem as before, EM boostrapping.

input d

t: pink 1 kicks
h: pink 1 quickly passes to pink 2

world

z = Uncertain

Beam Parser θt

Interpretation

d1

w

w

w

λ/pink2

λ/ pink2

w

w

kick/pass

kicks / passes to

wc

λ/ v

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

d2

w

w

w

λ/pink2

λ/ pink2

w

w

kick/pass

kicks / passes to

≡c

λ/ ≡

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

d3

|

|

w

λ/pink2

λ/ pink2

|

|

kick/pass

kicks / passes to

wc

λ/ v

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

d4

|

|

w

λ/pink2

λ/ pink2

|

|

kick/pass

kicks / passes to

≡c

λ/ ≡

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

... ... dk ...

k-best list

θt+1
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Experiment: Datasets

I Sportscaster: 4 games, 1872 sentences, 46 concept types.

I Inference Dataset: 461 pairs from training annotated (155 using AMT,

306 using local annotators).

I Elicitation: Directions from Snow et al. (2008). Those without

agreement discarded (standard).

Text t Hypothesis h Entail?

purple 7 kicks the ball purple 7 makes a bad pass {Entail,Contradict,Uncertain}
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Experiment: Evaluation and Results

I Old Evaluation: Can we generate the correct target representations for

held-out examples? (state-of-the-art results reported)

I New Evaluation: Can we generate correct entailments given held-out

pairs? (positive results using our method)

Inference Task Accuracy

Majority Baseline 0.33
RTE classifier 0.52
Naive Inference 0.60
SVM Flat Classifier 0.64
Inference Grammar 0.73
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Qualitative Analysis

I Improving the internal representations (before, a, after, b).

a.

Semsv

play-transitive

playerarg2

purple6c

6c

6 under pressure

purplec

purple

passr

passc

passp

passes to

playerarg1

purple9c

purple 9

b

Semsv

play-transitive

playerarg2

vc

vp

under pressure

purple6c

purple 6

passr

passc

passp

passes to

playerarg1

purple9c

purple 9

20



Qualitative Analysis

I Learned modifiers from example proofs trees.

(t, h): (a beautiful pass to,passes to) (gets a free kick,freekick from the)

analysis:

vc ./≡play-tran=vplay-tran

modifier
≡play-tran.

pass/pass

“pass to’/“passes to”

vc

vc /λ

“a beautiful”/λ

≡c ./≡game-play=≡game-play

modifier
≡game-play

freekick/freekick

“free kick” / “freekick from the”

≡c

≡c /λ

“gets a”/λ

generalization: beautiful(X ) v X get(X ) ≡ X

(t, h): (yet again passes to,kicks to) (purple 10,purple 10 who is out front)

analysis:

vc ./≡play-tran.=vplay-tran

modifier

≡play-tran.

pass/pass

“passes to”/“kicks to”

vc

vc /λ

“yet again”/λ

≡playerarg2 ./wc=wplayerarg2

modifier

wc

λ/ vc

λ/“who is out front”

≡playerarg2

purple10/purple10

“purple 10”/“purple 10”

generalization: yet-again(X ) v X X w out front(X )
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Qualitative Analysis

I Learned lexical relations from example proof trees

(t, h): (pink team is offsides,purple 9 passes) (bad pass.., loses the ball to)

analysis:

|teamarg1

substitute

pink team/purple9

“pink team’/“purple 9”

vplay-tran

substitute

bad pass/turnover

“bad pass .. picked off by”/“loses the ball to”

relation: pink team | purple9 bad pass v turnover

(t, h): (free kick for, steals the ball from) (purple 6 kicks to,purple 6 kicks)

analysis:

|game-play

substitute

free kick/steal

“free kick for”/“steals the ball from”

vplay-tran.

substitute

pass/kick

“kicks to”/“kicks’

relation: free kick| steal pass v kick
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Conclusion

I Learning from Entailment: Use entailment information and reasoning

to help train semantic parsers.

I Improve learning: learn background knowledge, find gaps.
I Evaluation: provides a new way to evaluate semantic parsers.

I Conceptually: Make our semantic learner behave more like a semanticist,

ground representation decisions in entailments.
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Thank You
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